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The first section of this paper attempts to formulate a mathematical model 
of an elastic anisotropic medium with sources of Internal stresses, such as 
dislocations, internodal atoms and vacancies, nonuniform temperature fields, 
etc. in this effort, we make eseential use of certain Ideas which seem to 
have been first enunciated by Kondo [l] and Wdaer [2]. -These references 
also cite other works in a similar direction. 

The second section of the paper gives an explicit solution of a problem 
posed by KrWer on the Invariant decomp sition of a bI-vaflent tensor field 
into potential birotational component8 
the terminology of Kr6ner). 

1 deformation and incompatibility In 
At the same time we examine a more general 

decomposition of the stress tensor which may be Interpreted 88 a decomposi- 
tlon Into body-force stresses and Internal stresses. Further, we determine 
and give an e&licit expression for the ffreen's tensor of Internal stresses 
for an unbounded anisotropic medium. 

1, %!h8 p*omotry o? an *lutlo oontlnwa with liourao8 of lntomd m-oemBt 
Qualitative Characteristics of the con- 

tinuum I We begin with the concept of *nearness'. Physically, this 

means that two nearby particles In an Initial state will remain nearby In any 

other arbitrary state. it Is Clear that this requirement Is satisfied by 

the elastic deformations In a medium with a crystal lattice and that It Is 

not satisfied by the displacements of sand. The concept of %earness* Is 

mathematically equivalent to the assumption that the medium, considered as 

a set of material points, is a topological space. Besides, two topological 

spaces are considered equivalent and IndIstInguIshable If there exists a 

reciprocal single-valued and continuous transformation of one space onto the 

other. Such a transformation Is called a homeomorphism (*). it may be said 

that a topological space Is determined to within the accuracy of 8 homeomor- 

phlsm. 

*fLldTh;tExa,ct definition of such concepts as topology, homeomorphIsm, mani- 
8 * and their properties may be found, for rxample, In 133. 
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The description of the state of a material medium In a space Is in pr&c- 
tice impossible without the ~ntr~uctl~ of a system of coordinates. This, 
as well as other considerations require that a system of coordinates might 
be introduced at least In the neighborhood of each point. Nevertheless, in 
the general case there is no basis for requiring the existence of a single 
system of coordinates for the entire space, if spaces are considered which 
are topologlcally not equivalent to a Euclidean apace, for example, a sphere, 
a torus, etc. 

We shall assume that the neighborhood of every point of the medium is 

homeomorphlc to an n-dimensional Euclidian space (or a half-space for a 

medium with a boundary). Usually n = 2 or m = 3 , even though it will 

be sometimes convenient to examine the case n > 3 . 

Finally, In order to examine fields of sufficiently smooth functions in 

the medium (for example, differentiable or analytic functions), It will be 

necessary to require corresponding smoothness of the medium itself. &a- 

phlcally this may be thought of In the following way: IS two curves (or 

surfaces) in the medium have a specified order of tangency In the Initial 

state, then they have the same order of tangency In an other arbitrary state 

(a medium such as clay OS course does not have such a property). However 

this is possible onlyiS the allowed transformations are not arbitrary homeo- 

morphlsms but are only sufficiently smooth dlffeomorphisms. It turns out 

that without any essential restrictions on generality the latter may be con- 

sidered analytic. 

The requirements listed above may be succinctly formulated in a single 

postulate: the material medium is a differentiable (~lytlc)m~ifold. 

The exterior space and the exterior 

metric . For definiteness we shall assume that the medium Is homeo- 

morphic to a three-dimensional Wlclldean space E3 , We denote points in 

the medium by 5 

smooth -bedding 

By assumption 

and points in the space by x . Let + be a certain Sixed 

~diffeomorphlsm) of the medium in A3 

a: E 4 X = 0 (E) P.0 

there exists an Inverse dlffeomorphism 

CD-': X - E = @l(X) (4.2) 

We shall say that the given ) specifies the external geometric state of 

the medium, All of the characteristics of the medium which depends only on 

# we shall call external (geometric) characteristics or functions of the 

external state. 

For an actual given P we introduce a Lagrangian system of coordinates 

El", associated with the medium, and an Eulerien system of coordinates x1. 

Then 
CD: xi = Xi fE=), Q-1: E" = Ea(Xi) (4.3) 

Here It. are sufficiently smooth functions with Jacobian8 which dif- 

fer from zero. 
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The basic external characteristic of the medium, the external metric, we 

shall define a3 the distance between the points of & in which are found 

the corresponding points of the medium in the state ip 

(@)a = &; (E) d%Q%fi = g$ (z) d&z" 64) 

Here &f is the EXtclidean metric tensor of ES I If, in particular, we 
take Cartesian coordinates for xX, then 

Thus the external metric (&?)e uniquely induces an imbedding 0 and has 

various representations iln Lagrangian and Eulerian coordinates. 

We have the obvious relationship& 

ft iS easy to show that the converse assertion 18 also true. The given 

external metric und.quely determines 8 to within the accuracy of a rigid 

body motion. Naturally, in this case the external metric cannot be prescibed 

arbitrarily, but must satisfy Equation 

&VP Cgel'e) = 0 (4.7) 

where Rhpv, 5~ the Riemann-Christoffel curvature tensor. As is known, this 

is a non.i.lnear, second order differential operator acting on go”ps (see for 

example C43). 

The internal state and the internal 

metric . We shall call internal characteristics of the medium those 

characterlstlce which do not depend on the lmbed&Lng D . The collection of 

all internal characteristics determine the Internal state of the medium. In 

particular, the above indicated qualitative characteristics relate to the 

number of internal characteristics: topology, nearness, smoothness. How- 

ever, an inelastic medium may also possess all these properties. We shall 

attempt to describe those internal characteristics which differentiate an 

elastic medium from an inelastic one. In other words, we shall define the 

concept of elasticity. 

Let 5 be a point in the medium and let uc be Its neighborhood. We 

imagine uE to be cut out of the medxum and isolated from all of the exter- 

nally acting forces, but In this process we shall asname that the tempera- 

tureof Ve. is nonvarying. Then uE will be in a certain external state 

#e which is spetified to w&thin the accuracy of the motion of uc as a 

rigid body. We shall say that P, is the natural state of the neighborhood 

6 More exactly; under natural state we shall understand the limiting 

state when UC -P 0. We shall assume that such a 1Mt exists and does not 

depend upon the means of the approach of UK to a point. 
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Let g$ be the metric of the neighborhood u, in the 

If we carry out a similar experiment for the neighborhood 

then we shall find g& (E) as a function of the point in 
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natural state. 

of every point, 

the medium. We 

shall assume that this function 1s sufficiently smooth. In such a way we 
construct a metric 

(ds")2 = &i (5) dppdEP = gii (Z) CiYdZ+ (1.8) 

which by definition does not depend on i and, consequently, is an Internal 

characteristic. We call this the Internal metric of the medium (*). 

The medium willbe considered to be elastic only when under the conditions 

of thf problem considered its Internal state does not change. 

We note that the natural state of the medium In the large, generally 

speaking, does not exist. This means that the Internal metric, in contrast 

to the external metric, will not be ticlldean, and the corresponding, curva- 

ture tensor will be different to zerolnthe general case. Hence the internal 

geomery of an elastic medium will be a Rlemannian geometry. 

Elastic strain . The elastic strain of a medium e.+, Is 

conveniently defined as the measure of derivation of the external state from 

the natural state. By definition, we set 

ear3 (5) = $ k%; (E) - i&S; (%)I (1.9) 

Figuratively speaking the elastic deformed state of the medium Is the 

difference of the external and internal states. The strain cap for the 

prescribed Internal metric cannot be arbitrary but must satisfy Equation 

(1.7) after the substltutlon g$ = gai f seaa. This equation Is a gener- 

allzatlonof the well-known Saint-Venc.nt compatlblllty conditions fbr the 

strains. The above clarifies the geclmetrlc meaning of the compatibility 

conditions. 

If it is assumed that the natural state exists for the entire medium In 

the large, then In this state the internal metric coincides with the external 

and hence 1s Euclidean. Then, selecting a Lagranglan system of coordinates, 

in a corresponding manner, we may set 

(&“)a = &p dE”d%P (1.10) 

We specify the external state 6 by Equation 

CD: sci = &i%a + Ui (5”) (1.11) 

Here ui may be interpreted as the displacement vector for the transition 

from *O to # . Taking into account (1.6), we find for the external metric 

In the state P the expression 

l ) The Internal metric seems to have been Introduced for the first time 1:. 
the investigation by Kondo [ 11. 
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Substituting (1.12) into (1.9) we obtlan the usual expression of E in 

terms of u . 

Xn the case of' small deformations this takes on the form 

aa8 = % ($% i- &up) or E = def u (1.13) 

The equation of compatibility (1.7) also takes on the usual form in this 
case. Hence, the definition of the elastic strain c by means of (1.9) Is 

a natural generallsatlon of the usual definition (1.13). 

The operator Rot and the density of 

sources of internal stresses . In the sequel we 

shall not assume a Iplclldean character of internal metric and shall examine 

a most important case when the metric may be assumed to deviate slightly 

from LPlclldean metric. This means that there exists a system of coordinates 
-a 
t;, in which the internal metric can be represented in the form 

(1.14) 

Here we also assume smallness of the first two derivatives e,;. In other 

terms, we assume a sufficient smallness of the strains and the displacements 

so that we may remain within thr? scope of a linear theory, In analogy to the 

classical linear theory of elasticity. 

The first consequence of these s~plif~cat~o~ will be the possibility of 

not makIng distinctions between Lagrangian and Eulerian systems of coordi- 

nates. The error which is caused by this process Is OS second order. It 

will also be convenient to assume a Cartesian coordinate system. The exter- 

nal a&i internal metrics, the deformation, the curvature tensor, etc. may be 

considered as corresponding tensor fields In Es. Finally, In the expres- 

sion for RxILVP we may neglect nonlinear terms and consider the curvature 

tensor as a linear operator. If one takes into account Its symmetry proper- 

ties, then with It In Es may be reciprocally and uniquely associated a cer- 
tain second order linear differential operator which acts on bi-valent ten- 

sors and whose values likewise are bi-valent tensors. We denote it by the 

symbol Rot and define by the relationship 

p = Rot q, pap = Eab~&~YDd~d~qpp (1.15) 

Here aasY, as usual, denotes the antisymmetrical unit pseudo-tensor. 

The operator Rot may also be written in the form 

Rot = rot (rot) (1.16) 

where rot is the usual curl operator and the prime denotes transposition. 

This operator was first introduced Into the theory of elasticltY by Krut- 
kov 151. The clarification of its geometrical meaning and the application 
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to the continuum theory of dislocations is basically due to Krbner [2] (the 
latter denoted the operator by the symbol Ink). 

We note some Important properties of this operator. From its definition 
It follows that Rot commutes with the transposition operator and hence 
with the symmetrlzatlon and alternatlon operators. Likewise the followlng 
relations are obvious 

div Rot = 0, Rot def = 0 (1.17) 

As will be obvious from the following, the operator Rot has In a Certain 
sense the same values for a field of tensors of second valency as does the 
operator rot for vector fields. The notation that has been used for this 
operator in the present paper makes this clear. It seems appropriate to 
call this the double rotor (birotor) and to tail the tensor field p , repre- 
sented In the form p = Rot 
of the form grad u or f' 

birotational. The corresponding tensor field 
de u , where u Is a vector, could be called a 

potential field. 

Equation (1.7) may now be rewritten in the form 

Rot gr = 0 (1.18) 

In the case of internal Euclidean metric, Equation 

R&e=0 (1.19) 

will be a compact form of writing the usual Saint-Venant compatibility con- 

ditions. From the above it follows that these are the necessary and suffi- 

cient conditions for an elastic deformation E (at least locally) to be 

representable In the form def u . 

In the case of a noneuclidean internal metric we follow Rr8ner and intro- 

duce the notation 
Rot go = - 2q (1.20) 

Therefore 

Rot e = q (1.21) 

Here qaP Is the density of sources of Internal stresses. Kr8nercaUsthe 

tensor ql,p the incompatiblllty tensor. Obviously the condition q = i) is 

the necessary and sufficient condition for the absence of internal stresses. 

We note two Important cases. If the Internal stresses are caused by a 

nonuniform distribution of temperatures, hen from the above it follows 

lmmedlately that 
'1 = Rot T, T,, = ye(s) i&p (1.22) 

Here etr) is the temperature and y is the coefficient of thermal 

expansion. If the Internal stresses are stipulated by a distribution of 

dislocations, then, as KrClner [2] showed, 

q = S (rot a)’ 

where a is Burgers' mass flux density vector and S is the symmetrization 

operator. 

2. ar.ul’I turror ot lntm rtrorror. Since we are limiting our inves- 

tigation to small deformations, it Is natural to awnme that Hooke's law Is 

valid 

& = Cas+ahP, a+ = c;;;:s HI C_l@W 
c* xpw Y = &fl' 

(2.1) 
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We shall rewrite these relations In straightforward notation 

0 = CE, e = C-la (2.2) 

The equations which determine stresses in an anisotropic medium without 

sources of internal stress have the form 

div 0 = - f, Rot C-la = 0 (2.3) 

where 3 1s the density of body forces. As follows from the preceding, 

analogous equations in the case of the presence only of sources of internal 

stresses are written in the form 

div CT = 0, Rot C-b - q (div q = 0) (2.4) 

The general case 1s obtained by superposition. 

We shall examine solutions (2.3) and (2.4) vanishing at infinity, for an 

Infinite anlsotroplc medium. We shall assume that f and 11 are locally 

Integrable and that they are either different from zero In a bounded region 

or decrease sufficiently rapidly at infinity. It 13 known that the solution 

(2.3) may be represented in the form 

o=P (x) = 5 Gi=fi (5 - x0) f’ (x,,) dx, (2.5) 

where Gia’ (x) Is the Green's tensor of the theory of elasticity for stresses. 

When there Is no possibility of ambiguity, it Is convenient to use the sym- 

bol + for the convolution integral of two functions over the entire space. 

Then (2.5) can be rewritten as 

o=G*f (2.6) 
where it 1s necessary to take Into account that In ad#ltlon to the CCIWO~U- 

tlon Integration we also have here a tensor contraction over one index. 

Obviously, the Green's tensor c must satisfy &Uations 

&G? = - dad (x), Rot CA;\, Giap = 0 (2.7) 

or In straightforward notion 

div G = - e, Rot C-1G = 0 (2.8) 

where e(x) is the kernel of the Identity operator acting over the vectors. 

The second equation is satisfied identically if we set 

GtP (x) = CapAp8A Uip (5) (2.9) 

Here vi,, (x) is the Green's tensor for displacements. Substituting (2.9) 

into the first equation, we obtain an equation which determines Vi, 

C aphpdp8~ Uip = - dZp6 (5) (2.10) 

As was shown b 
8i 

Llfshits and Rozentsveig C61, in the general case the 
construction of reduce5 to the determination of the roots of an algeb- 
raic equation of 512th degree whose coefficients are determined by the elas- 
tic constant tensor CaB p. In a number of cases, for example, for an iso- 
tropic medium, for hexagonal symmetry, and for all sorts of weak anisotropy, 
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the solution of this equation may be written ln explicit form. In the re- 
maining cases It Is necessary to solve this equation numeric. 

881 
In what 

follows we shall assume that the Oreen’s tensors u,,. and GP 
lg. 

are known. 
We mention in passing that Ui, 

Gi”s like r-a 
decreeses at Infinity like ‘t_’ and, there- 

fore, 

The goal of this section 1s the construction of the Green’s tensor for 
the system of equations (2.4). However, the concept of Oreen’s tensor In 
the 
(2.47 

resent case has not as yet been defined since the right-hand side of 
must satisfy the additional condltlon dlv n =O . Hence, as a prell- 

mlnary, we examine a subsidiary problem which Is also of Intrinsic interest. 

The decomposition of a tensor field 

into invariant components . As Kr6ner [ 23 has . 
shown, a sufficiently smooth symmetrical bl-valent tensor A , vanishing at 

Infinity, may be uniquely decomposed Into a potential component A,O and a 

blrotatlonal component A2 

A = A,” + A,“; 2;); =_ “d A,” = def b 

a- 9 Aso = Rot B (2.11) 

Here b and B are respectively a vector and a syxmnetrlcal bl-valent 

tensor playing the role of potentials. To define B uniquely, one may In 

this case superpose the additional condition dlv B = 0 . However Krbner 

did not give an algorithm with which one could find the potentials h and 

B and effect the Indicated decomposition In practice. 

It Is convenient to formulate this problem in the following manner. We 

introduce on the space of the tensors A the projection operators no and 

@‘, determined from the relationships 

norIo = I-II”, we” = w, I-I’ + 8” = E 
Rot l-f“ = 0, div 8” = 0 (2.12) 

where E 1s the Identity operator. When the entire space decompos% Into 

a direct sum of two subspaces of potentlal and blrotatlonal tensors 

A,” = IPA = no * A, A,” = WA = 8” * A (2.13). 

Here ILo (t) and fi” (3) are fourth-valent tensors which are the kernels 

of the corresponding projection operators. They are to be taken In the sense 

of generalized functions [7]. 

Thus, the problem consists of finding 

or, what is the same, for 3C” and 3”. 

We Introduce the generalized Kroneker 

explicit expressions for go and B 

tensor 

q; = s;a; - a;a," (2.14) 

and rewrite the algebraic Identity 

%GQ*Pr a1x1 a*Xa = s,“:a;ia;;s; + s”,:s”,:a#k - a;:i@;:&;: - a;@$$; (2.15) 

Contracting It with ax,x,f%” , we obtain the operator Identity 



AS is not difficult to verify, the following relationship is valid 

8;; = a@3 vaX (2.17) 

Remembari~ the definition (1.15) of the Rot operator and taking into 

account (2.17), after some transformation, the identity (2.16) can be finally 
written in the form 

A2 = def (2A - grad div) div + Rot Rot (2.18) 

This identity is analogous to the well-known formula of vector analysis 

A = grad div - rot rot (2.19) 
We set 

Ri:;f: = r (3~) S;l;S;f: @=8Ap2W (2.20) 

and apply both sides of the Identity (2.18) to the expression 

-; R;$ * A,,,, 

Taking into account that 

A2r (z) = - 8nS(z) (2.21) 
we obtain 

A= - & def (2A - grad div) div R * A - -&Rot Rota* A (2.22) 

It is easy to see that the generalized tensor functions 

;710 =1 - -& def (2iJ - grad div) div R, 6” = - -& Rot Rot R (2.23) 

(lc~~~ 1_S$~ = qp$p (T)) , 

are the kernels of the unknown projection operator, which solves the posed 

problem on,the decomposition of a tensor field into potential and birota 

tlonal components. Simultaneously, expressions have been obtalned for the 

vector and tensor potentials 

* (grad div - 2A) div A, R=--*R&A 

div B=O (2.24) 

We note that the preceeding in an analogous way it is easy to generalize 

the given decanposltlon to the case of asymmetrical bl-valent tensors. 

The Green's tens0 r for internal stres- 

ses * We represent the solution of the system (2.4) in the form 

ls=@ = Hfff* qa'" (2.25) 

It is clear that the Green's tensor x must satisfy the first equation 

of the system. As far as the second equation for H is concerned, on its 

right-hand 8lde should stand the kernel of an operator which coincides with 
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the identity operator on a subspace of birotational tensors and which has 
zero divergence. But it is lnsnedlately apparent that these properties are 

possessed by 60 . Heme, 

div R = 0, Rot C-lH = 6” (2.26) 

Above, we constructed an algorithm for the decomposition of a tensor Into 

potential and blrotational components. We consider a decomposition of a 

more general form. Let A , as before, be a symaetrlc bi-valent tensor vani- 
shing at infinity. We set 

A = A, + A,, Rot PA, = 0, div A s=o (2.27) 

or in terms of the projection operator8 

Al=IIA, A,= eA; IXI = II, ee=e, n+e=E 

Rot C-‘II = 0, div 8 = 0 (2.28) 

This decomposltlon may be interpreted In the following way. Let A be 

the atress tensor. Then A, is the component of stresses which la caused 
by body forces, that is, a solution of the system (2.3), whereas Al are 

internal stresnes, that is a solution of the system (2.4). !Phe decomposition 

(2.12) may In this case be considered as a particular instance of the given 
decontposition if one seta 

C!!.a,, = s&q (2.29) 

It is easy to verify that one of the possible representations ll and 8 

Is given by Expressions 

If = - G e div, e=E+G*div (2.30) 
where 0 is the Green’s tensor defined above from the theory Of elasticity. 
However, this representation still cannot be directly us& for the COnstrUC- 
tlon of H . 

Of fundamental Importance is the operator identity 

8 = eceoc-1 (2.31) 

For the proof of this identity we first of a31 mention that the divergence 

of both sides of the equation, by virtue of (2.28), vanishen. On the other 

hand, from (2.12) and (2.28) It follows that 

Rot 8” = Rot, Rot C-W = Rot C-’ (2.32) 

Now applying the operator Rot (T1 to both sides of Equation (2.31) and 

taking Into account (2.32), we obtain an Identity. However If the result of 

the application of the operators dlv and Rot C-’ to t!lo tensors, vanishing 

at infinity, coincide, then the tensors themselves coincide, since their dif- 

ference is a solution of the homogeneous equations of the theory of elasti- 

city vanishing at infinity. This however proves the Identity (2.31). 

Thus, for the internal stresses u we have 
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tJ = 80 = $jC4yy-lg = - -& (C + G * div c) (Rot Rot R * C-la) 

From the properties of convolution [7] it follows 

Rot Rot R * C-‘is = Rot Rot (r * C-‘0) = 

= Rot (r * Rot C-%) = Rot R * Rot C-‘a 

Substituting into (2.33) we find 

p.33) 

(2.34) 

(T= - 4 (C Rot R + G * div C Rot R) * Rot C-la (2.35) 

Therefore for the Qreen’s tensor of the Internal stresses we obtain Kxpres- 
sion 

H(z)=-& [C Rot R (z) + G (z) * divCRot R (z)] ~2.3~~ 
which solves the problem that has been posed. By a direct verification one 
may be convinced that N satisfies &quations (2.26). It Is likewise easy 
to see that x-r1 for x-0, 

The problem of determining the internal streeses in an isotropic medium 
was solved earlier by another method by KrUner 121. 

ln conclusion we remark that the general problem of fIndIng the etress 
tensor in an infinite anisotrop::c medium in the preaenue of external and 
Internal sources of stress may te formulated in the following way: It is 
required to find the symmetric Lensor u under the COndltiOns a(-) - 0 , 
if we have prescribed 

div d = - f, Rot C-la = q (2.37) 
The solution can be written in the form 

cr==G*f+H*q (2.38) 

In the particular case where C satisfies (2,29), It follows from (2.23) 

G” = -& def (grad div - 2A) R, Ho = - -& Rot R (2.39) 
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