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The first section of this paper attempts to formulate a mathematical model
of an elastic anisotropic medium with sources of internal stresses, such as
dislocations, internodal atoms and vacancies, nonuniform temperature fields,
etc. In this effort, we make essential use of certain ideas which seem to
have been first enunciated by Kondo [1] and KrBaer [2]. - These references
also cite other works in a similar direction,

The second section of the paper gives an explicit solution of & problem
posed by Krdner on the invariant decompgsition of a bi-valient tensor field
into potential birotational components {(deformation and incompatibility in
the terminology of Krdner). At the same time we examine a more general
decomposition of the stress tensor which may be interpreted as a decomposi~
tion into body-force stresses and internal stresses. Further, we determine
and give an explicit expression for the Green's tensor of internal stresses
for an unbounded anisotropic medium.

1. The geometry of an slastic continuum with sources of internal stresses.
Qualigtative characteristics of the con-~-
tinuum . We begin with the concept of "nearness”. Physically, this
means that two nearby particles ln an inltial state will remain nearby in any
other arbitrary state. It 1s clear that this requirement 1s satisfied by
the elastic deformations in a medium with a crystal lattice and that it is
not satisfied by the displacements of sand. The concept of "nearness” is
mathematically equivalent to the assumption that the medium, considered as
a set of material points, is a topologlcal space. DBesides, two topological
spaces are considered equivalent and indistinguishable if there exists a
reciprocal single-valued and continuous transformation of one space onto the
other. Such a transformation 1s called a homeomorphism (*). It may be said
that a topological space is determined to within the accuracy of a homeomor-
phism.

*)}) The exact definition of such concepts as topology, homeomorphism, mani-
fold, ete. Bnd their properties may be found, for rxample, in [3].
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Internal stresses in an anisotropic elastic medium 759

The description of the state of a material medium in a space is in prac-
tice impossible without the introduction of a system of coordinates. This,
as well as other considerations require that & system of coordinates might
be introduced at least in the neighborhood of each peint., Nevertheless, in
the general case there 1s no basis for requiring the existence of a single
system of coordinates for the entire space, if spaces are consldered which
are topologically not equivalent to a Fuclidean space, for example, a& sphere,
a torus, etc.

We shall assume that the neighborhood of every point of the medium is
homeomorphlc to an n-dimensional Euclidian space {or a half-space for a
medium with a boundary). Usually n = 2 or n = 3 , even though it will

be sometimes convenlent to examine the case n > 3 ,

Finally, in order to examine flelds of sufficlently smooth functions in
the medium (for example, differentiable or analytic functions}, it will be
necessary to require corresponding smoothness of the medium itself. Gra-
phically this may be thought of in the following way: If two curves {or
surfaces) in the medium have a specified order of tangency in the initial
state, then they have the same order of tangency in an other arblitrary state
{a medium such as clay of course does not have such a property). However
this 1s possible only if the allowed transformations are not arbitrary homeo~
morphisms but are only sufficlently smooth diffeomorphisms. It turns out
that wilthout any essential restrictions on generality the latter may be con-
sidered analytic.

The requirements listed above may be succinctly formulated in a single
postulate: the material medium is a differentiable (analytic) manifold.

The exterilor space and the exterior
metric . PFor definiteness we shall assume that the medlum is homeo-
morphic to a three-dimensional Euclidean space £, . We denote points in
the medium by € and points in the space by x . Let § be a certain fixed
smooth imbedding (diffeomorphism) of the medium in z,

»: E-z=0(F) (4-9)
By assumption there exlsts an inverse diffeomorphism
Oz E=01(z) (1.2)

We shall say that the given ¢ specifies the external geometric state of
the medium, All of the characteristics of the medium which depends only on
¢ we shall call external (geometric) characteristics or functions of the
exteraal state.

For an actual given $ we introduce a Lagranglan system of coordinates
E“, assoclated with the medium, and an Bulerlan system of coordinates x!,

Then R
©: =2 (5, @-1: B == (2) (1.3)

Here z?(ﬁ“) are sufficliently smooth functions with Jacobians which dif-
fer from zero,
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The basle external characteristic of the medium, the external metric, we
shall define as the distance between the points of #, in which are foung
the corresponding points of the medium in the state &

r I
(dsTY? = gup (B) dE*dEB = gy (2) dzidz* (1.4)
Here g£ is the Buclidean metric tensor of g, . If, in particular, we
take Cartesian coordinates for x', then

(dsT)? = dydatdet = 2 (dzty? (1.5)

Thus the external metric (dsp)’ uniquely induces an imbedding ¢ and has
varlous representations in Lagranglan and Bulerian coordinates.

We have the obvious relationships
T | 8% 3e?
BO-demEE  do-bdeaXE w9

It is easy to show that the converse assertion is also true. The given
external metric uniquely determines $ to within the accuracy of a rigid
body motlon. Naturslly, in this case the external metric cannot be prescibed
arbitrarily, but must satlsfy Equation

Ripwe (gap) = 0 .7

where I?wa is the Riemann~Christoffel curvature tensor. As is known, this
is & nonlinear, second order differential operstor acting on g;B {see for
example [4]}.

The i1nternsal state and the 1Internal
metric . Weshall call internal characteristics of the medlum those
characteristics which do not depend on the imbedding ¢ . The collection of
all internal characteristics determine the internal state of the medium. In
particular, the above indicated qualitative characteristics relate to the
number of internal characteristics: topology, nearness, smoothness. How-
ever, an inelastic medium may alsc possess all these properties. We shall
attempt to describe those internal characteristics which differentiate an
elastic medium from an inelastic one. In other words, we shall define the
concept of elasticity.

Let £ be a point in the medium and let U be its neighborhood. We
imagine l]g to be cut out of the medium and isolated from all of the exter-
nally acting forces, but in this process we shall assume that the tempera-
ture of Z7g. is nonvarying. Then ZYE will be in a certain external state
§, which is speclified to within the accuracy of the motion of D@ as &
rigid body. We shall say that &, 1s the natural state of the neighborhood
Us. More exactly, under natural state we shall understand the limiting
state when [Jg — (. We shall assume that such a limit exists and does not
depend upon the means of the approach of Uz to a point.
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Let gh; be the metric of the neighborhood U/; in the natural state.
If we carry out a similar experiment for the neighborhood of every point,
then we shall find g;p(g) as a function of the point in the medium. We
shall assume that this function 1s sufficlently smooth. In such a way we
construct a metric

(ds°)? = gap (E) dE*dEP = g (z) daida® (1.8)
which by definition does not depend on § and, consequently, is an internal
characteristic. We call this the internal metric of the medium (*).

The medium will be considered to be elastic only when under the conditions
of the problem considered its internal state does not change.

We note that the natural statle of the medium in the large, generally
speaking, does not exist, This means that the internal metric, in contrast
to the external metric, will not be Buclidean, and the corresponding curva-
ture tensor will be different to zero in the general case. Hence the internal
geomery of an elastic medium will be a Riemannian geometry.

Elastic strain . The elastic strain of a medium g,5 1is
conveniently defined as the measure of derivation of the external state from
the natural state. By definition, we set

eap () = 1 [gap (8) — £ap (B)] (1.9)

Figuratively speaking the elastic deformed state of the medium is the
difference of the external and internal states. The strain &€,3 for the
prescribed internal metric cannot be arbitrary but must satisfy Equation
(1.7) after the substitution gﬁE = ga; -+ Zeas, This equatlon is a gener-
alization of the well-known Saint-Ventnt compatibility conditions fdér the
strains, The above clarifies the gecmetric meaning of the compatibility
conditions,

If 1t is assumed that the natural state exists for the entire medium in
the large, then in this state the internal metric coincides with the external
and hence is Euclidean. Then, selecting a Lagranglan system of coordinates,
in a corresponding menner, we may set

(ds°) = 8ap dE*dEP (1.10)
We specify the external state & by Equation
O: 2t = 0.8 + ut (§9) (1.11)

Here y? may be interpreted as the displacement vector for the transition
from &, to & . Taking into account (1.6), we find for the external metric
in the atate ¢ the expression

*) The internal metric seems to have been introduced for the first time 1ir,
the investigation by Kondo [1].
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8ap = Oup + Bplta + Bt + Duu¥dgu, (aa =-§..) 1.12)

Substituting (1.12) into {1.9) we obtian the usual expression of ¢ 1in
terms of wu .

In the case of small deformations this takes on the form
€ap = Yy (Oplta + Batty) o &= defu (1.13)

The equation of compatibility (1.7) also takes on the usual form in this
case. Hence, the definition of the elastic strain ¢ by means of (1.9) 1is
a natural generalization of the usual definition (1.13).

The operator Rt and the densilty of
sources o f internal stresasases . In the sequel we
shall not assume a BEuclidean character of internal metric and shall examine
a most important case when the metric may be assumed to deviate slightly
from Riuclidean metric. This means that there exists a system of coordinates
£2, in which the internal metric can be represented in the form

gap (B) = Bap + 2605 (), | Eap | << 1 (1.14)

Here we also assume smallness of the first two derivatives aa;, In other
terms, we mssume a sufficlent smallness of the strains and the displacements
s¢ that we may remain within the scope of a linear theory, in analogy to the
classical linear theory of elasticlity.

The first consequence of these simplifications will be the possibllity of
not making distinctions between Lagranglan and Bulerian systems of coordi-
nates. The error which 1s caused by thils process 1s of second order. It
will 21so be convenient to assume a Cartesian coordinate system. The exter-
nal and internsl metrics, the deformation, the curvature tensor, etc, may be
considered as corresponding tensor fields in 123. Finally, in the expres-
sion for }?A?vp we may neglect nonlinear terms and consider the curvature
tensor as a linear operator. If one takes into account its symmetry proper=-
ties, then with it in 153 may be reciprocally and uniquely assoclated a cer~
tain second order linear differential operator which acts on bi-valent ten-
sors and whose values likewise are bi-valent tensors. We denote it by the
symbol Rot and define by the relatlonship

p = Rot g, prP = e eP%030,q,0 (1.15)

Here g“ﬁ*, as usual, denotes the antisymmetrical unit pseudo-tensor.

The operator Rot may also be written in the form
Rot == rot (rot)’ (1.16)
where rot 1s the usual curl operator and the prime denotes transposition.

This operator was first introduced into the theory of elasticity by Krut-
kov {5]. The clarification of 1ts geometrical meaning and the application
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to the continuum theory of dislocations is basically due to Krdner [2] {the
latter denoted the operator by the symbol Ink).

We note some important properties of this operator. From 1ts definition
it follows that Rot commutes wlth %he transposition operator and hence
with the symmetrization and alternation operators. DLikewise the following
relatlions are obvious

div Rot = 0, Rot def = 0 (1.47)

As will be obvious from the following, the operator Rot has in a certain
sense the same values for a fileld of tensors of second valency as does the
operator rot for vector fields. The notation that has been used for this
operator in the present paper makes this clear. 1t seems appropriate to
call this the double rotor (birotor) and to call the tensor field p » repre-
sented in the form p = Rotg , birotational. The corresponding tensor field
of the form grad y or def y , where u 1is a vector, could be called a
potential field.

Equation (1.7) may now be rewritten in the form

Rot gT' =0 (1.18)
In the case of internal Euclidean metric, Equation
Rote =0 (1.19)

will be a compact form of writing the usual Saint~Venant compatibility con-
ditions., From the above it follows that these are the necessary and suffi-
clent conditions for an elastic deformation ¢ (at least locally) to be
representable 1n the form def u .

In the case of a noneuclidean internal metric we follow Krdner and intro-
duce the notation

BRot g° = — 29 (1.20)
Therefore

Rot e = q (1.21)

Here nt is the density of sources of internal stresses. Kréner calls the
tensor Tyg the incompatibility tensor. Obviocusly the condition 1 = @ is
the necessary and sufficlent condlition for the absence of internal stresses,

We note two important cases. If the internal stresses are caused by a
nonuniform distribution of temperatures, hen from the above it follows

immediately that
1 = Rot T, Tepg = 78(x) Sap (1.22)
Here 6{x) 1is the temperature and vy 18 the coefficlent of thermal
expansion, If the internal stresses are stipulated by a distribution of
dislocations, then, as Krdner [2] showed,
1 = § (rot a)’ (1.23)

where g 1is Burgers' mass flux density vector and § is the symmetrization
operator.

2, Green's tensor of internal stresses. Since we are limiting our inves-
tigation to small deformations, 1t is natural to assume that Hooke's law 1s
valid

A
0% = C**Mey,, &y, = CLla0%8, C*M(C,N, = 8l%8d) 2.1)
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We shall rewrite these relatlons in strailghtforward notation
o = Ce, e=Cls 2.2)
The equations which determine stresses in an anisotropic medium without
sources of 1internal stress have the form
dive = —f, Rot C% = 0 (2.3)

where 7y 1s the density of body forces. As follows from the preceding,
analogous equations in the case of the presence only of sources of internal
stresses are written in the form

dive = 0, Rot C% =1n  (divq=0) (2.4)

The general case 1s obtalned by superposition.

We shall examine solutions (2.3) and (2.%) vanishing at infinity, for an
infinite anisotropic medium. We shall assume that # and n are locally
integrable and that they are eilther different from zero in a bounded reglon
or decrease sufficlently rapldly at infinity. It 1s known that the solution
(2.3) may be represented in the form

08 (2) = | Gio® (& — 2) I () 4o (2.5)

where G;*® (z) 1s the Green's tensor of the theory of elasticity for stresses.
When there is no possibility of ambigulty, 1t is convenlent to use the sym-
bol * for the convolution integral of two functions over the entire space.
Then (2.5) can be rewritten as

c=G+xf (2.6)
where it 1s necessary to take into account that in additlon to the ccnvolu-
tion 1ntegration we also have here a tensor contraction over one index.

Obviously, the Green's tensor ¢ must satlisf{y Equations
3.6 = — 808 (2),  Rot Cnks G = 0 (2.7)
or in straightforward notion
div G = — e, Rot C1G = 0 (2.8)

where e(x) 1s the kernel of the identity operator acting over the vectors.

The second equation 1s satisfied identically if we set
A
G (z) = C***0,Us, (2) (2.9)

Here Uj, (z) 1s the Green's tensor for displacements. Substituting (2.9)
into the first equation, we obtain an equation which determines lhu

C*M9,0\U s, = — 876 (2) (2.10)

As was shown 35 Lifshits and Rozentsvelg [6], 1in the general case the
construction of *“ reduces to the determination of the roots of an algeb-
raic equation of sixth gegree whose coefficients are determined by the elas-
tic constant tensor C°P**] In a number of cases, for example, for an iso~
tropic medium, for hexagonal symmetry, and for all sorts of weak anlsotropy,
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the solution of this equation may be written in explicit form. In the re-
maining cases it 1s necessary to solve this equation numericigl In what
follows we shall assume that the Green's tensors p are known.
We mention in passing that U' decreases at infinity like r ! and, there-
fore, GiB like 73

The goal of this sectlon is the construction of the Green's tensor for
the system of equations (2.4). However, the concept of Green's tensor in
the present case has not as yet been defined since the right-hand side of
(2.4) must satisfy the additional condition div n=0 . Hence, as a preli-
minary, we examine a subsidiary problem which is also of intrinsic interest.

The decomposition of a tensor field
into invariant components . As Krbner (2] has
shown, a sufficien%ly smooth symmetrical bi-valent tensor 4 , vanishing at
infinity, may be unlquely decomposed into a potential component 4,° and a
birotational component 4°

RotA;° =0, A;°=defb
divd,° =0, A,°=RotB 2.11)

Here 2 and B are respectively a vector and a symmetrical bi-valent
tensor playing the role of potentials. To define 5 uniquely, one may in
this case superpose the additional condition div p = O . However Kr8ner
did not give an algorithm with which one could find the potentials » and
B and effect the indicated decomposition in practice.

A = Alo + Aao;

It 1s convenient to formulate thls problem in the following manner. We
introduce on the space of the tensors 4 the projection operators [° and
8°, determined from the relationships

I°TI° = [I°, ©°8°=6°, II°+8°=E
Rot TI° = 0, div €° = 0 (2.12)

where EF 1s the ldentity operator. When the entire space decomposzs into
a direct sum of two subspaces of potential and birotational tensors

AP =TPA =5°+ A, A° =04 =10°+4 (2.13)

Here n1° (z) and {§° (z) are fourth-valent tensors which are the kernels
of the corresponding projection operators. They are to be taken in the sense
of generalized functions [7].

Thus, the problem consists of finding expliclt expressions for [° and @°
or, what is the same, for m° and 0°,

We introduce the generallzed Kroneker tensor

egy = 838) — .03 (2.14)

and rewrlite the algebraic identity
ehmichns = ORIOTONON -+ OLIONOR0N — OROLIOLISE — Suomomdy  (2:19)

Contracting it with 0Oan,0"":, we obtain the operator identity
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oy, O

Y Pape __ RARTE
EBimERmOr 0" = 88 A\® + 0p,p,0"™ — A\ (85105,0™ + 83105,0™)  (2.16)
As 1s not difficult to verify, the following relationship is valid
I\
£ = Bpu.e"et (2.17)

Remembering the definition (1.15) of the Rot operator and taking into
account (2.17), after some transformation, the identity (2.16) can be finally
written in the form

A? = def (2A — grad div) div 4 Rot Rot (2.18)

This ldentity is analogous to the well-known formula of vector analysis

A\ = grad div — rot rot (2.19)
We set
Rpig, = 1 (2) 88 (r=by, zham) (2.20)

and apply both sides of the identity (2.18) to the expression

1 WLy O
- 8_“_ RB:B: * A“:az
Taking into account that
A?r (z) = — 8nd(2) (2.21)
we obtain
A = — & def (21 — grad div) div R » 4 — 4 RotRotRs 4 (2.22)

It is easy to see that the generalized tensor functions
i . . 1
1= — = def (2A — grad div) div R, 0° = — = Rot Rot B (2.23)
(e + 05 = 80508 (a)

are the kernels of the unknown projection opesator, which solves the posed
problem on'the decomposition of a2 tensor field into potential and birota
tional components. Simultaneously, expressions have been obtalned for the
vector and tensor potentlals

b:%i*(graddiv—fla)divA, Bx—%*ROtA
divB =0 (2.24)
We note that the preceeding in an analogous way 1t is easy to generalize

the glven decomposition to the case of asymmetrical bi-valent tensorc.

The Green's tenseor for internal stres-
s es . We represent the solution of the system (2.4) in the form

0%8 = H3E & pv (2.25)

It is clear that the Green's tensor & must satisfy the first equation
of the system. As far as the second equation for 4 1is concerned, on its
right-hand side should stand the kernel of an operator which coincides with
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the identity operator on a subspace of birotational tensors and which has
zero divergence. But it is immedlately apparent that these preperties are
possessed by ©°, Hence,

divH =0, RotCH =49° (2.26)

Above, we constructed an algorithm for the decompositlion of a tensor 1lnto
potential and birotational components. We consider a decomposition of a
more general form. Let 4 , &as before, be a symmetric bi-valent tensor vani-
shing at infinity. We set

A=A, +4, RotC4,=0, divd,=0 (2.27)

or in terms of the projection operators

A, =14, A,=04; MNI=I, ©686=6, 0O+6=E
RotC1Il =0, dive =0 (2.28)

This decomposition may be interpreted in the following way. Let 4 be
the atress tensor. Then 4, 1s the component of stresses which 1s caused
by body forces, that i1s, a solution of the system (2.3), whereas A, are
internal stresses, that 1s a sclution of the system {2.4). The decomposition
{2.12) may in this case be considered as a particular instance of the given
decomposition if one sets

CHh = 818 (2-29)

It is easy to verify that one of the possible representations I and @

is given by Expressions

I = — G+ div, ® =E + G« div (2.30)
where ¢ 1s the Green's tensor defined above from the theory of elasticlty.

However, this representation still cannot be directly use~d for the construc-
tion of ¥ .

Of fundamental importance is the operator identity
8 = 8Ce°C? (2.31)
For the proof of this identity we first of all mention that the divergence

of both sides of the equation, by virtue of (2.28), vanishea. On the other
hand, from {2.12) and (2.28) it follows that

Rot 8° = Rot, Rot C'6 = Rot C? (2.32)

Now applying the operator Rot (™! to both sides of Equation (2.31) and
taking into account (2.32), we obtain an identity. However if the result of
the application of the operators div and Rot C7! to tuo tensors, vanishing
at infinity, coincide, then the tensors themselves coincide, since their dif-
ference is a solution of the homogeneous equations of the theory of elasti-
eity vanishing at infinity. This however proves the identity (2.31).

Thus, for the internal stresses ¢ we have
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0 = 80=8C0°C0 = — - (C+ G » divC) (Rot Rot R+ C%0)  (2.33)

From the properties of convolution [7] it follows
Rot Rot R * C™'0 = Rot Rot (r+ C"0) =

= Rot (r + Rot C'g) = Rot R » Rot C'o (2.34)
Substituting into (2.33) we find
6 = — - (CRot R + G+ div C Rot R) » Rot Clo (2.35)

Therefore for the Green's tensor of the internal stresses we obtain Expres-

sion H(z) =~ [CRot R (z) + G (2) » divCRot R ()] (2.36)
which solves the problem that has been posed. By a direct verification one
may be convinced that y satisfies Equations {2.26). It is likewise easy
to see that F ~ ! for x - o ,

The problem of determining the internal stresses in an isotropic medium
was solved earlier by another method by Krlner [2].

In conclusion we remark that the general problem of finding the stress
tensor in an 1nfinite anisotroplc medium in the presence of external and
internal sources of stress may te formulated in the following way: It is
required to find the symmetric tensor ¢ under ths conditions o(w) = O,
if we have prescribed

dive = — f, Rot C'o = 1 (2.37)
The solution can be written in the form
6 =G+f-+ H=»n (2.38)
In the particular case where ( satisfies (2.29), it follows from (2.23)
o 1 f ° . __i__
G = e def (grad div — 2A) R, H B Rot R (2.39)
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